Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Infect Dis ; 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-2313064

ABSTRACT

Reverse transcriptase polymerase chain reaction (RT-PCR) tests are the gold standard for detecting recent infection with SARS-CoV-2. RT-PCR sensitivity varies over the course of an individual's infection, related to changes in viral load. Differences in testing methods, and individual-level variables such as age, may also affect sensitivity. Using data from New Zealand, we estimate the time-varying sensitivity of SARS-CoV-2 RT-PCR under varying temporal, biological and demographic factors. Sensitivity peaks 4-5 days post-infection at 92.7% [91.4%, 94.0%] and remains over 88% between 5 and 14 days post-infection. After the peak, sensitivity declined more rapidly in vaccinated cases compared to unvaccinated, females compared to males, those aged under 40 compared to over 40 s, and Pacific peoples compared to other ethnicities. RT-PCR remains a sensitive technique and has been an effective tool in New Zealand's border and post-border measures to control COVID-19. Our results inform model parameters and decisions concerning routine testing frequency.

2.
PeerJ ; 10: e14119, 2022.
Article in English | MEDLINE | ID: covidwho-2080858

ABSTRACT

During an epidemic, real-time estimation of the effective reproduction number supports decision makers to introduce timely and effective public health measures. We estimate the time-varying effective reproduction number, Rt , during Aotearoa New Zealand's August 2021 outbreak of the Delta variant of SARS-CoV-2, by fitting the publicly available EpiNow2 model to New Zealand case data. While we do not explicitly model non-pharmaceutical interventions or vaccination coverage, these two factors were the leading drivers of variation in transmission in this period and we describe how changes in these factors coincided with changes in Rt . Alert Level 4, New Zealand's most stringent restriction setting which includes stay-at-home measures, was initially effective at reducing the median Rt to 0.6 (90% CrI 0.4, 0.8) on 29 August 2021. As New Zealand eased certain restrictions and switched from an elimination strategy to a suppression strategy, Rt subsequently increased to a median 1.3 (1.2, 1.4). Increasing vaccination coverage along with regional restrictions were eventually sufficient to reduce Rt below 1. The outbreak peaked at an estimated 198 (172, 229) new infected cases on 10 November, after which cases declined until January 2022. We continue to update Rt estimates in real time as new case data become available to inform New Zealand's ongoing pandemic response.

3.
Sci Rep ; 12(1): 2720, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1900625

ABSTRACT

We develop a mathematical model to estimate the effect of New Zealand's vaccine rollout on the potential spread and health impacts of COVID-19. The main purpose of this study is to provide a basis for policy advice on border restrictions and control measures in response to outbreaks that may occur during the vaccination roll-out. The model can be used to estimate the theoretical population immunity threshold, which represents a point in the vaccine rollout at which border restrictions and other controls could be removed and only small, occasional outbreaks would take place. We find that, with a basic reproduction number of 6, approximately representing the Delta variant of SARS-CoV-2, and under baseline vaccine effectiveness assumptions, reaching the population immunity threshold would require close to 100% of the total population to be vaccinated. Since this coverage is not likely to be achievable in practice, relaxing controls completely would risk serious health impacts. However, the higher vaccine coverage is, the more collective protection the population has against adverse health outcomes from COVID-19, and the easier it will become to control outbreaks. There remains considerable uncertainty in model outputs, in part because of the potential for the evolution of new variants. If new variants arise that are more transmissible or vaccine resistant, an increase in vaccine coverage will be needed to provide the same level of protection.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Models, Theoretical , Quarantine , Vaccination , COVID-19/epidemiology , COVID-19/transmission , Disease Outbreaks , Humans , New Zealand/epidemiology
4.
R Soc Open Sci ; 8(11): 210488, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1528253

ABSTRACT

New Zealand responded to the COVID-19 pandemic with a combination of border restrictions and an Alert Level (AL) system that included strict stay-at-home orders. These interventions were successful in containing an outbreak and ultimately eliminating community transmission of COVID-19 in June 2020. The timing of interventions is crucial to their success. Delaying interventions may reduce their effectiveness and mean that they need to be maintained for a longer period. We use a stochastic branching process model of COVID-19 transmission and control to simulate the epidemic trajectory in New Zealand's March-April 2020 outbreak and the effect of its interventions. We calculate key measures, including the number of reported cases and deaths, and the probability of elimination within a specified time frame. By comparing these measures under alternative timings of interventions, we show that changing the timing of AL4 (the strictest level of restrictions) has a far greater impact than the timing of border measures. Delaying AL4 restrictions results in considerably worse outcomes. Implementing border measures alone, without AL4 restrictions, is insufficient to control the outbreak. We conclude that the early introduction of stay-at-home orders was crucial in reducing the number of cases and deaths, enabling elimination.

5.
R Soc Open Sci ; 8(9): 210686, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1447702

ABSTRACT

Throughout 2020 and the first part of 2021, Australia and New Zealand have followed a COVID-19 elimination strategy. Both countries require overseas arrivals to quarantine in government-managed facilities at the border. In both countries, community outbreaks of COVID-19 have been started via infection of a border worker. This workforce is rightly being prioritized for vaccination. However, although vaccines are highly effective in preventing disease, their effectiveness in preventing infection with and transmission of SARS-CoV-2 is less certain. There is a danger that vaccination could prevent symptoms of COVID-19 but not prevent transmission. Here, we use a stochastic model of SARS-CoV-2 transmission and testing to investigate the effect that vaccination of border workers has on the risk of an outbreak in an unvaccinated community. We simulate the model starting with a single infected border worker and measure the number of people who are infected before the first case is detected by testing. We show that if a vaccine reduces transmission by 50%, vaccination of border workers increases the risk of a major outbreak from around 7% per seed case to around 9% per seed case. The lower the vaccine effectiveness against transmission, the higher the risk. The increase in risk as a result of vaccination can be mitigated by increasing the frequency of routine testing for high-exposure vaccinated groups.

6.
N Z Med J ; 133(1521): 28-39, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-807838

ABSTRACT

AIMS: There is limited evidence as to how clinical outcomes of COVID-19 including fatality rates may vary by ethnicity. We aim to estimate inequities in infection fatality rates (IFR) in New Zealand by ethnicity. METHODS: We combine existing demographic and health data for ethnic groups in New Zealand with international data on COVID-19 IFR for different age groups. We adjust age-specific IFRs for differences in unmet healthcare need, and comorbidities by ethnicity. We also adjust for life expectancy reflecting evidence that COVID-19 amplifies the existing mortality risk of different groups. RESULTS: The IFR for Maori is estimated to be 50% higher than that of non-Maori, and could be even higher depending on the relative contributions of age and underlying health conditions to mortality risk. CONCLUSIONS: There are likely to be significant inequities in the health burden from COVID-19 in New Zealand by ethnicity. These will be exacerbated by racism within the healthcare system and other inequities not reflected in official data. Highest risk communities include those with elderly populations, and Maori and Pacific communities. These factors should be included in future disease incidence and impact modelling.


Subject(s)
Betacoronavirus , Coronavirus Infections/ethnology , Ethnicity/statistics & numerical data , Health Status Disparities , Life Expectancy/ethnology , Native Hawaiian or Other Pacific Islander/statistics & numerical data , Pneumonia, Viral/ethnology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , Coronavirus Infections/mortality , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , New Zealand , Pandemics , Pneumonia, Viral/mortality , SARS-CoV-2 , Survival Rate , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL